RREF v.s Solution

Solving system of linear equation

A complex system of linear equations

A simple system of linear equations

elementary row operations:

Reduced Row
 Echelon Form (RREF)

1. Interchange any two rows of the matrix
2. Multiply every entry of some row by the same nonzero scalar
3. Add a multiple of one row of the matrix to another row

Reduced Row Echelon Form

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form

Example 1. Unique Solution

$$
\left[\begin{array}{cccc}
\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{~b} \\
1 & 0 & 0 & -4 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 3
\end{array} \quad \square \quad \begin{array}{rl}
x_{1} & =-4 \\
x_{2} & =-5 \\
x_{3} & =3
\end{array}\right.
$$

Example 2. Infinite Solution

Free variable Basic variabl les, there are

 infinitely many solutions.Parametric Representation:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
7+3 x_{2}-2 x_{4} \\
9-6 x_{4} \\
2
\end{array}\right]
$$

Reduced Row Echelon Form

- Example 3. No Solution

When an augmented matrix contains a row in which the only nonzero entry lies in the last column

The corresponding system of linear equations has no solution (inconsistent).

